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Abstract 
-

Various work on code generation is discussed, particularly from the point of view of
simplify ing and/or automating the derivation of this phase of comp ilers. Code
generators , which typically translate an intermediate notation into target machine code
in one or more steps, have been relatively ad hoc as compared to the first phase of
compilers 1 which translates a source language into the intermediate notation. Progress
in formalizing the code generation process is summarized, with the conclusion that
considerably more work remains. Future directions of research are suggested.
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/1. Introduction

The classical compi ler has two main phases: recogni t ion, and generation. The
recognizer , which translates a source program into an internal notation, typ ically
consists of lex ical , syntactic , and static semantic analysis. A code generator then
translates the internal notation into object code, in one or more subphases, with
various degrees and kinds of optimization.

Although there is more work to be done, considerable progress has been made toward
formalization and mechanization of the recognition phase of compilation. This paper is
a survey and analysis of some recent work toward doing the same for the code
generation phase, which heretofore has remained unpleasantly ad hoc and has received
less theoretical attention. The recurrent theme of these reviews is the goat of
simplifying and automating the construction of this phase of compilation. Par ticular
attention is paid to the contributions and shortcomings of the various approaches with
respect to this goal.

Unfortunately, the assumptions and comp ila tion models of authors in this area differ
widely, making a generalized summary of their work virtually impossible. Instead, the
approaches are discussed individually, drawing comparisons where appropriate. Then,
in the fi gures given at the end of thi~ paper, a few salient features will be compared

• along some common dimensions. The reader may want to refer to these tables as the
approaches are presented.

2. General Background

Wilcox , in his thesis at Cornell [1971], provides one of the first comprehensive
discussions of code generation for a high-level language comp iler. In particular , he
abstrac ts methodology from his work on PL/C, a PL/1 compiler developed at Cornell.
As well as describing the general struc ture of the compiler or ~ code generator , he
discusses in some detail addressing and data reference , register managemen t, and the
translation process between his internal notations , the APT and SLM. The APT is an
Abstract Program Tree which is essentiall y a parse tree of the language, but oriented
towards sequencing of operations rather than the phrase structure of the input. The
APT is linearized, then translated into a sequential SLM (Source Language Machine)
notation which is essentially an assembler-like notation especially oriented towards
executing PL/1. After some optimization on the SLM, It is translated into 360 machine
code.

• Some of Wilcox ’s work , such as the idea of an APT, and his scheme for data
description, have significance for general code generation. Unfortunately for our
purposes, a large part of the work is specific to the machine and language, with few
hints as to how it might be generalized. Also, the structure of the compiler precludes
certain kinds of optimization; more on this later.

$
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A recent thesis by Simoneaux [1975] provides a more readable and general discussion
of compiler organization , intermediate representations , and optimizat ion, in the same
li ght as this paper. However this thesis constitutes litt le or no new results , and
therefore will just be pointed to as a reference here.

Weingart [1973) also presents a summary of code generation techniques , and a
promising forma lization of the code generation process; his work will be discussed in
section 4.

In general, there have been two kinds of approaches to more automatic production of
code generators. The first is the development of a specialized language for code
generators , with built-in machinery for dealing with common details of the process.
The second extreme is the development of a program to build a code generator for a
language from a purely structural and behavioral machine descr i ption. Rather than
being mutuall y exclusive , these proceduraL and descriptive language approaches ,
respectivel y, represent points in a continuum of degrees of automatic programming. it
is sometimes difficult to classify an approach along this dimension; for examp le , authors
sometime refer to “description? which are really just tabular representations of
procedures. The descriptive approach is probabl y ultimatel y more desirable; not
surprisingly, there has been more success wi th the former approach.

3. The Specialized Procedural Language Approach

Etson and Rake’s (1970) CCL, Generate Coding Language, was used as a procedural
specification of code generation in a large PL/1 compiler. In the implementation
described in their artic le , GCL is translated into an internal code and interpreted. Code
generation is performed in one pass , a tree walk, in which node-specific routines
(catted OPGEN Macro Definitions, written in GCL), are invoked at each node. Previous
passes have expanded certain operations (such as indexing and type coercions) and
performed global optimiza tions on the tree. Elson and Rake seem to have been
reasonably successful with this approach, except perhaps for compilation speed, which
would be improved by compiling GCL, or by simply improving the implementation, which
they suggest.

A recent thesis taking the specialized language approach was written by R. P. Young at
the University of Illinois (1974). The organization and internal notation he uses is
similar to that of Wilcox (who is now at U of I and served as his advisor). The code
genera tion process is described in Id (Interpretive Coding Language), which is stored
and interpreted by the Coder. The input to the Coder from the compiler front end is
in the form of a sequential SLU notation. ICL is based on templates for each SLM
instruction, having capabilities for decision -making, automat ic handling of various data
accesses (an elaboration of Wilcox ’s data descri ptors ) , and register allocation. ICL
turns out to be hard to read and write , so Young proposes a higher-level TEL
(Template Language) which is compiled into ICL

Young’s approach is a considerable improvement over simple machine code macro
substitution for source language operations. He recognizes that Nsimple substitu tion
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H
into a code skeleton ... leads to inadequate code ”, which is wha t led him to ICL.1 This is

• not to say that he has solved all the problems of a specialized language for code
• generation, however. There are , in particular , some serious questions with respect to

the organization of the system. For examp le, the decision to do all the translation in
one pass makes forward references difficult (reserving space for address calculation
f or an instruction and “then either no-op Instructions or a branch around the unused
space Is inserted...” patching it later!) In discussing optimization, he suggests that the
SLM instructions should somehow be “rearranged to perform the required computation
in a more eff icient manner ”, but this makes difficult the optimizations which depend on
the original APT, or the peculiarities of the machine architecture. It could also be
argued that the intermediate SLM notation is not necessary at all, that generation could
proceed directly from the APT.

Implementation of Young’s coder was unfortunately not done, although an ICL
descri ption for the 360 was proposed.

There is a comparativel y long history of compiler-writing systems , dealing with code
generation to lesser or greater extents. These efforts have all taken the specialized
language approach. An early example is Feldman (1966], who uses a language FSL for
descri ption of programming language semantics (code generation). In combination with
a syntax description, it was used in a comp iler-compiler. It was somewhat primitive,
but did deal with errors, fo rward  references, and simple storage allocation. Feldman
and Gries [1968] and McKeeman et al [1970] survey more advanced translator writing
systems. More recently, White (1973) and Ganzinger at al (1977] describe compiler-
generation systems along this line. Traditionally, compiler-generation systems have
been weak on automating the later stages of compi lation, specifically code generation.
But as the formal methods and grammars applied have become better understood and
more powerful , their scope has gradually been evolving towards the later stages of
compilation. -

Ripken (1975] describes the intermediate code generator currently used in the latter
comp iler-genera tor , MUG2 (Ganzinger at al (1977)).

There are three distinct phases of code generation in his scheme, as shown in Figure
2. The first phase takes as input an APT-like tree with attributes attached to the
nodes, constructed and optimized in earlier phases of MUG2. This APT is translated
into a zero-address virtual machine code. A Tree-Walking Push-Down Transducer
(TPDT) performs this translation, using a set of code templates (indexed by APT
operator) in a specialized notation allowing testing of attribute values attached to

• nodes and output of code. In the second phase, the zero-address machine operations
$ 

are translated into an SLM-like n-address form (which Ripken calls the Intermediate
Language, IL). This is a fairly simple procedure, in which the zero-address vir tual
machine, with its several stacks , is simulated, and SLM-instructions emitted for each

~ b~ad.qv.~s cod. is 5.n,,sfed b.c.vs. “p1. substitution do.sn’t sh ow InSlyu iS of th. con t .~~t in which s
construc t .pp.ar.. For .umpls w~ mIhi want to ~.n.rafe diff,r.nt cod. for an addilgon if th. r.puIt is u..d
s, .n oddi sse (ind. iiun~), or if on. of th. .v~u,nsnt. is 1.
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1
zero-address Instruction (except PUSHes and POPs). Finally, the SIM instructions are
translated into target machine code, using macros for the SLM instruction provided by
the user (as In Miller (1971]).

The MUG2 group has gone much farther than previous compiler-generator projects in
several ways. They have been abie to integrate forma lizations of all phases of the
compiler, including the later stages, and optimizations in particular. This has largely be
made possible by the richness and numerousness of their intermediate notations.
These allow each phase to operate on the notation most appropriate and efficient for
its use. The APT representation in general, and attributes in particular , have been
used to make the description of various tree transformations and optimizations
possible in a concise way. Also, the zero-address machine phas. make it possible to
neatly separate temporary allocation, because temporaries and their lifetimes are made
exp licit on a stack.

Like earlier comp iler-generation systems , MUG2 avoids machine dependence until quite
late in the compilation process. This is a mixed blessing. It means that changing
machine could be as easy as changing the the SLM macros in the last stage. However ,
if one wants to make machine-dependent optimizations, particularly those which
involve recognizing early in the comp ilation the tree segments that should be
performed by certain target instructions,2 then we are not in as good of shape. This
is particularly troublesome because simplification rather than automation of machine
dependence is the approach taken. However, work on MUG2 is still under way, and the
authors should have more advances forthcoming.

4. More Automation, More Descriptive Languages

P. L. Miller’s thesis (1971] was probably the first attempt toward automating code
generator production. 1-tis goal is statedly the descriptive language approach.
Although he only attacked a portion of the complete problem, the limitations and
applicability of his work are fairly clearly specif ied.

In Miller’s model, construction of a code generator occurs in two phases. First , the
language Is “described” by a set of macros in MIMI, a procedural Ma~chine Independent
Macro Language. These provide a machine-independent skeleton for a code generator.
Then, the machine is described k OMMI, a declarative Object Machine Macro Language,
which is used to “fill out” the code generator skeleton. Specifically, the OMML.
specifies the registers and memory on the machine, instructions to move data between
them, word size and alignment information, and most Importantly, the instructions to
emit for each “macro” (actually, an SLM-like instruction) produced by the MIML
procedures. The SLM-like Intermediate code is a sequence of two-operand virtual
instructions, but is essentially a binary tree because each Instruction is numbered and
one of the operands may be (the number of] a previous Instruction. •

2 
~~~~~ •~s~ pls~ usl~~ • subtr.ct- on.-eod -.hlp—lf -s.ro for s hoop, lndsiiin1 for an addition, or s sh if t for mul t iply
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In order to eventually achieve both language and machine independence , it is important
that the descri ptions of the two be separated. In the past , It has not been necessary
to attack this difficult task. Miller’s model of code generation looks interesting in this
respect , in that it might be possible to do this In his sys tem, If the details can be
ironed out.

His scheme f ,bb 5 short of our goals in two major ways. First , onl y two subproblems are
attacked: ar ithmetic express ions , and data ac~ ss; and the solutions are not comp letel y
general. For example , in data access , he allows only simple address calculation (index,
disp lacement , base), assumes all of memory is addressable , and that registers have
certain properties. Second, his approach cannot properly be called purely descriptive.
Obviously, this hasn’t been achieved with respect to the language, as the MIML macros
are essentially programs. With respect to the machine ,, it is necessary to specif y
instruction sequences for each macro , which is debatably pure description, although It
is a step in the right direction.

M. K. Conegan [1973) has attempted to generalize Miller ’s scheme in some ways. The
heart of his sys tem is a finite-state machine model of code generation: in the process
of generating code for a node in a parse tree , the code generator enters various
states , dependent on the properties of the operands and the machine registers
available. Code is emitted and operations performed on the basis of this state; then
another state is entered, or (in a t.rntinal state ) code generation for the node is
complete.

Donegan points out that the state transition table with associated actions is easier to
understand and debug than routines in a language tailored to code generation such as
those described earlier in this paper. He suggests a language CGPL (Code Generator
Preprocessor Language) for conveniently describing the states and actions , and a
preprocessor which translates CGPL into a program in a high-level language such as
P1/i. The program, when compiled, would constitute the code generator. The
preprocessor must analyze the state transitions to generate a program utilizing the
shortest paths to each terminal state , checking for input errors such as circular paths.
It must also make some assumptions about register allocation and other tasks
performed in the code generation process.

Donegan’s bigges t contribution is his characterization of the code generation process
in such a simple way, a finite state machine. The simplicity of the model aids human
understanding, as mentioned above, as well as making mechanization easier. His forte
may also be his weakness , however: has the process been oversimplified? For
examp le, the model as presented seems to have trouble with register allocation, when
there are more than one or less than an effectively infinite number of registers.
Donegan points out that “Any attempt to assign states to each possible register
conditions would be rather hopeless” in such a case , and discusses various
alternatives , none of which look very at tractive. The finite state model as described
seems to be more of a convenient mechanism for handling data access characteristics
of instructions, than a panacea for code generation. However, more elaborate ‘state
tables look promising as an efficient notation for constructing or driving a code
generator from the output of an analysis program.
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Unfortunatel y, Donegan didn’t implement the system, so the only assurance we have
that problems are surmountabl. is the usual expression of confidence that the basic
ideas are sound, that implementation would fill in details. This isn’t particularly a fault
of Donegan’s work , but rather is true to more or less of a degree of all the work
discussed in this paper: the whole task is too large to undertake these studies.
Consequently, it is especiall y necessary to try to foresee how major details might be
handled in these models.

Another contribution of Donegan is that he has neatly separated code generator
generation time from code generation time, a concern with some other rn~dels.
Donegan makes little mention of Languag. independence, incidentally, presumably h.
had in mind dealing with multiple machines and a singl. language.

Concurrentl y with Donegan, Weingart (1973) developed a model of code generation
that is more powerful , and demonstrabl y practical. His code generator uses a pattern
tree , or discrimination net , to select code sequences for an APT-like input parse tree.

The code generator works as a coroutine to the parsing process. APT tokens
(operat or , symbol, and constant nodes of the tree) are passed to the code generator ,
which stores them on a stack , and t r a v e r s e s  the pattern tree in an attempt to match
the stack tokens (the stack is a preorder representation of the APT tree). The tree
walking commences with the top node of th. pattern tree; the nodes encountered are
of two sorts:

(1) output actions , which occur at the leaves of the pattern tree , and specify
instructions to generate. After processing such an output action, the code
generator returns to the top of the pattern tree, using the next piece of APT
Input.

(2) match nodes, which specify an operator , operands (register , memory, constant ) ,
or one of the predefined classes of operators or operands; these are matched
against the current input token. Upon a successful match, the tree wa lk
continues at the right son of this pattern tree node , with the next input to ken ;
otherw ise , it continues at the left son.

This pattern tree , used as a discrimination net, is a compac t and efficient way to
represent most of the machine-dependent information in a code generator Weingart
demonstrated th. method by modif ying an IMP-tO (Bilofsky(1973)) compiler (which
already used this Internal representation ), to generate code for the PDP-1 1. There is
st i l l  some machine-dependency not built-in to the t r.., particularly with resp ect to
instruction and data format , but this does not look infeasible for future work. 

-

•

Weingart found that creating the pattern tree for the POP-il , despite its simple and
compact form, was quite difficult. This is not surprising, since all of the potential code
sequences and patterns must be interwoven into the one pattern tree with the proper
ordering to ,gener ate good code. This prompted We ingart to engage in the second part
of his thesi~, attempting to automatically generate the tree from a machine description.
Unfortunatel y, his ideas here are not nearly as universal as his formalization of code
generation; the problem has been vastly oversimplified.

1:

________________________ — —~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~ 
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Bas~catIy, it is assumed that each machine nctr uction corrt’sponds to one language
operator , with a small tree representing the acti on of the instruction. When that tree
i5 found in the input , it is assumed that we should generate that instruction. It is
immediatel y apparent that this is insuffic ient , as We inga rt observes , n the cases w b~re
no instruction imp lements some portion of an input tree. To fix this , he adds
“con~.ersions ”. These correspond to instructi ons that “corv~ert a data item to a fo r rn in
which one of the other insruct ions can operate on it , fo r e’iamp le moving it into a
register . The thesis is quite we ak on conversions ; the POP- il is only part ial’~ dealt
~~t h, and the scheme does not appear to be general enough to handle other machines.
However , Weinga rt  did succeed in writ ing a program which (for the FDP-1 1)
automaticall y constructs the pattern tree from a special representation of the
instruction act ions , and automatically adds the convers ions , given a human-generated
input fif e wh ich sets these up (e.g., specifies the neces sa ry conversions).

Wein gart dies not show the code generator or e~ampIes of its output. The
automatica lly generated pattern tree was not compared to the manuall y generated one,
nor was the quality of the code discussed. The thesis is lacking in evaluation of
resu lts , with respect to both performance and generality.

k~ore recently, Newcomer (1975) presents a more promising ~pproach to the select ion
of code sequences. In his scheme , a set of attributes , T-overators , Languo ~g. ~ir i ~~r~u,
and some other specif ications are prepared for a machine and language , and these are
analyzed to produce code templates (specify ing code to geriet’ate for language
constructs)  for a com p iier . The analysis uses APT-l ike language parse trees , but wi th
attributes attached to the nodes. The attributes are selected by the user to specify
useful properties and other information about the nodes in the tree. For examp le,
they might specify the location to be used for a temporary required in the calculation
of the node’s result , “fudge factors ” such as whether the negative of the originally
specified result is to be computed for efficiency reasons , or common sub-expression
information.

The T-operators are of two kinds: terrnAn.AL T-ops , and trart sf or rn Qt~on 1-ops [my terms ,
not Newcomer ’s), wh ich probabl y should be thought of as completel y differen t animals ,
although they have been given the same name in the thesis.

Terminal T-ops specify trees for which code can be generated “immediately ”. When a
tree is not of this form, transformation I-Ops specify operations which can be
perfo-med to change its form . This might include generation of some code , for
examp le, to load an operand into a register , or it might not , for example in
transformations of the tree based on arithmetic propert ies. Like terminal 1-ops,
transformation T-ops specify the form and attributes of the trees to which they are
aopticable; in addition, they specify the form and attributes of the trees after the
operation is performed. For efficiency, T-ops are indexed by the (top) lari~uage
operator (L-op) of the trees to which they apply. It is ako necessary to know the
cost of using the i-op, and its requirements and effects on the global program state
(for examp le, with respect to allocation of resources). Conveniently, cost can be
measured as whatever the user desires to optimize ; the only assumption made Is that a
cost can be given to each code sequence , and that these are additive.



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

8

Because Newcomer’s thesis does not include a comp lete description of the code
template  generation scheme in one place , a summary of the process may be usefu l
here. Although his mathematical notation would make this description much shorter , it
has not been used, to improve readability. In the following, “template ” means a
language tree with attributes (a pattern ) plus a code sequence which implements that
tree.

Given an APT-like language tree L for which we wish to generate a code t~ -nlate
(comments on this selection below), we ~o~~rch for code sequ ences as follows:

Si. Look up the top operation of L, to get all termir ’il T-ops which might be
app licable, calf this set P.

S2. It any are directly app licable (shape & attributes match L) then go to S7.

S3. Form a Preferred Attribute Set (PAS) by putting together the sets of attributes
required (of the operands) by the terminal T-ops in P.

$4. Recursivel y perform this algorithm for each operand of the top node of L,
passing the PAS as a parameter. each son will return a set of temp lates with
potential code sequences for their evaluation.

S5. Form the cross-product o~ possibilities for these temp lates , collecting alt
possible concatenat ions of the code sequences. -

S6. Form the cross-product of this set with P (P gives the possible code sequences
to implement the top L-op), but only include those operand evaluation
sequences whose attributes satisfy the attribute (domain) requirements of the
corresponding element of P.

S7. If a non-empty subset of these satisf y the PAS u’s were passed , return this
subset (the first time the algorithm is performed, the PAS is empty and trivially
satisfied. Otherwise:

$8. Attempt to satisfy the PAS by means-ends analysis similar to that used in GPS
(Ernst & Newell, 1969), but exhaustive: For each template, find the difference
between its requirements (attributes) and the PAS. Use this difference to look
up transformation T-ops, and try applying them to get templates which satisfy
the PAS.

S9. If successful with a non-empty subset of templates , return this set (with the
attributes and code sequences , as modified by the transformation 7-ops to
sa tisf y the PAS). Otherwise, give up.

The language axioms ac used to determine all other trees equivalent to the given one,
and this algorithm is performed for each.

Although this algorithm could be used directl y in a compiler, to generate code for a

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
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tree L, it would be too expensive to do the anal ysis at compile tir”e. ~‘ r a d , ~envisioned that a driving program would somehow select a comp lete set ~~~ “C

than necessary) of srnak language trees for which to find optimal code. Tb .~ ~templates (language trees with correspo nding code sequences ’) which co - . ~ “~~~

used in the comp iler. Both the selection of the trees and the use of the ?er’ r ~~~~

the compiler are open Icr future research.

Note that it is possible for S9 to “give up”. This should not normall y happen ‘~~ t ’ .~.
exists any way to imp lement L on the machine and the T-ops provided are aie~~ e’e
However , in order to avoid an infinite loop in which the algorithm repeatedl y ape ci a
sequence of T -ops which unknowingly return it to its ori ginal s tate , it was neces~a’ .
to limit the depth of search. To avoid this , it would be necessary to leave ~ e ~~~~~~~~

ends ana lysis parad igm and incorporate memory of previous search.

One of the best streng ths of Newcomer ’s temp late idea is that it appears to be su’t.- ’~for use in an optimizing compiler such as Bliss-li (Wutt et at [1975]), in wh rc ” c Ode
generation occurs in several phases. The temp lates can be used in an earlier phase ‘~~

enumerate potential code sequences to guide, say, register allocation, and later , in ~e
actual output of code.

The most consp icuous draw backs of Newcomer ’s sc heme are that it is too genera l , ard
that it is not general enough. It is probably too general in the sense that ~.e*c~~~P’
has applied general but weak Al methods to the problem, and expe r ienced d ”  ~ 

•

with the amount of time required to analyze even simple trees. It might be p o s s b e  ‘0
achieve tolerable performance through heuristics; he suggests what effects “~e’e

heuristics would have to have, but gives no actual mechanisms. Anoth~. alter”~’ ~to use a stronger method wi th co rr esponding ly stronger assumpt ions and b~knowledge about cod e generation.

Like Donegan, Newcomer deals only with arithmetic expression trees . An ooe” a’ea
for research is to determine whether control constructs and other operat ions can b.
incorpo rated into his scheme. Also open to further work is a way to auto~~al’ca
discover semantic equivalence of trees; the general problem is undecidable , a”
approximate solution is desired to reduce proliferation of identical cases.

Inventing the attributes , transformation & terminal T-ops , and other spe c ifi c a t i~~’~ ‘
~~~

this system is still a non-trivial task , even though the case analysis is auto rrated
mechanism for deducing them from a machine description would be desirable, f ~ r ~~“ s

reason as well as others.

Concurrentl y with Newcomer , Snyder (1975), at MIT, wrote a thesis w ith so ”’ew ’a’
less ambitious goals with respect to formalization and automation of code generat e” .
but interesting in that it provides ideas for different genera l izations. His paper
describes the implementation of a compiler for the programming language C, in w h c~ a
large part of the machine dependence of the code generation process has beer’
abstracted into tables.

The first phase of the comp iler code generation produces a 3-address code fo r an
abstract C-machine. The second phase then translates this abstract machine code ~‘c

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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assembly code for the target machine (a macro expansion scheme is used, which t akes
advantage of proper ties of typ ical assembly languages). These two phases are
analogous to Miller’s MIML and OMML, but more refined, as we will see shor tly.

The instructions for the abstract machine, which Snyder refers to as AMOPs (Abstract
Machine Operations), are essentially L-ops which include the types (real, integer,
pointer) of their operands. Pseudo-instructions are also permitted. These are
basically keyword macros for storage allocation, procedure linkage, and other
information. The addresses for the abstract machine are called REFs; a REF may
specify an abstract register, static or stack variable, label, indirect reference, or
cons tant.

The user provides a machine description, in the form of a set of specifications which
map the abstract machine onto a real machine. These speciticat is are translated by
a stand-alone program GT which generates tables for the code generator. The
machine description maps the abstract machine onto a real machine in two ways. Par t
of the mapping is occurrIng in GT before the compiler is produced, the other part In
the compiler itself; keep this in mind to avoid confusion.

The user’s machine description consists of three kinds of specifications. First , the user
defines the data storage and access struc ture to be used in the abstract machine (i.e.,
the target machine structure). To do this, he defines the register names, classes of
registers, conflic ts (either real or due to the abstract representation), memory
alignment, and addressable unit sizes. Snyder uses a quite readable declaration-like
notation to specif y this information:

regnames (X@ , Xl, X2 , X3, X4 , A, 0, F)
claes X (Xø,Xl,X2 ,X3 ,X4), R (A ,Q);
size 1 (char), 4~~nt ,float), 8(double);

Then, the user specifies the data access properties of the machine Instructions, In a
“operandi, operand2, result” notation. For example,

+dx F,fI,F
+1: R,M,l
*1: 0.11,0 [A)

specifies that: double precision add ( sd) takes its first operand form the F—register , Its
second operand from memo ry , and leaves Its result In the F-register; Integer add ( .i.l)
takes its first operand in a register , the second from memory , and leaves the resul t In
the f irst operand location; integer multiplication (ii) multiplies a memory locat ion into
the Q-register and destroys register A in the proce ss.

Then, the user defines a mapping from abst ract machine operations to assembly
language , using a macro -expansion scheme. This Is somewhat comp lex to describe
here, but a simple example Is:

+1; N A0#R #S” I



,.
~~~

—.-—.—--—.-—..- .-.-
~
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~~ ~~~~~~~ 
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w here eR and iS are macros which ex pand to the iames of the result and second
operands , re pe’& t~~t’ly ,  An occurrence of integer addilion might then expand to

AC1A X

to add X to accumulator A, for examp le. When the features supplied for macro
n~pans on are insuff icient , it is possible to spec if y this in the form of a C routine.

A lt ogether , Sny der has made some hopeful advances toward our goals, particularly in
the convenient specif ication of data storage and access. Unfortunately, it is necessary
to perform the c ase anal ysis of code sequences , and to construc t macros and C
routines to perform the translation. Further work combining the successes of Snyder
and Newcomer will eventuall y be necess.~ry.

Snyder brings up an important point with respect to abstract machines , or in fact any
intermediate notation between source and object languages:

“If the abstract machine is of a high level (i.e., very problem- oriented), then the
program [compiler) w ifl be very portable , but the implementation of the ah~tr act
machine will be difficult. On the other hand, if the abstract machine is of a low level
(i.e., more machine-oriented ), then, unless it corresponds closely to the target
machine , either the code will be ineff icIent or the implementation will be complicated
by optimization code.”

In the case of an UNCOL for multi ple languages , there is yet another constra int , that it

correspond to the he~h level language , to’ both implementation and code eff iciency .
Nevertheless, the motivat ion for an UNCOL is great , and t his author believes that these
will become more prevalent , probably with some language or machine restrictions (e.g.,
see Coleman [1974]). Snyder seems fairl y definite , however , about stick ing with one
language.

The fact that Snyder fully implemented his system was a great asset in evaluating his
ideas , because he was forced to fill in deta i ls , even if only for a couple machines. 14.
was cwprisingty successful in converting his compiler to generate c~ de for another
machine In a few days time. Of course , t o achieve an implementation of an entire
compiler in reasonable time it was necessary to simplify by restrict ing machine
architectures and Ignoring optimizat ion to a large extent. For example , the register
allocation Is performed on the f ly by a simple local algorithm.

The directions Snyder points out for further work are “bigger and better ”: more
general machine model, more complicated languages , and opti mization. Our goal of
more fully automating code generator generation could be added to this list.

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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5. Related Formal Treatments

At the opposite pole from implementation, Aho & Johnson (1976] deal formally with the
problem of generating op timal code from a parse tree, using a model simIlar to
Newcomer ’s. They propose a model of machine and language , and show several
Interesting results. In particular , they show that a simple brute-force optimal code
generation scheme is linearly proportional to the tree size and instruction set size.
Unfortunately , they also make some unacceptable simplifying assumptions. For
example , with respect to the language , they are only dealing with expression trees,
and on ly ones wi thout common subexpressions. With respect to the machine , an
instruction must compute and store a single result into a register , regis ters must be of
one symmetric kind, and of course they do not deal with any other processor st ate or
Intricacies of control, only the arithmetic Instructions in one-to-one correspondence
with arithmetic L-ops.

Samet (1975], in a voluminous thesis, presents a method for proving that a code
generator has correctly translated a program; he has Implemented the prover for
translations of CMFLISP, a subset of LISP, in to LAP, a POP-tO assembly code. Samet’s
system proves that a particular program was correctly translated Independent of the
code generation process, rather than proving that a code generator Is correct
independent of the input program. This approach has the advantage that no
knowledge of the the code generator , be It human or machine, Is required, but, of
course, the disadvantage that a new proof is required for each translation.

Basically, to prove that a set of machIne instructions correctly implements a CMPLISP
function, his system symbolically executes the machine Instructions In such a way as to
produce a tree representation of their effect , and this Is then proved equivalen t to the
CMPLISP function. The cornerstone of the system is a canerucoA tree representation ,
obtained using a set of semantic equivalence axioms which Samet derived from
McCarthy(1963]. Both the original program and the output of the symbolic execution
are expressed in this form , as shown in Figure 2, reducing the equivalence /non-
equIvalence proof to a comparatively simple matching process.

The “ machine description ” in Samet ’s system consists of a set of LISP procedures , one
for each LAP instruction. When the proc edure for an instructIon is executed , It
updates a computational model as appropriate to the effect of the ins truction. It also
performs certain control operatlonsl for example, when a conditIon is tested, either the
condItIon value Is known from previous results and that path is taken, or both paths
are processed (there are mechanisms to stack alterna tIves and test for loops ).

Samet’ s system has been oversimplified here. However , it should be clear that his
Ideas , In particular the symbolic execution , t he axioms of semantIc equ ivalence , and t he
canonIcal tree form , have poten tial app licability to our goals of gerser-oung a translator.

I

L - - _____ . -— 
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6. Summary

Figure 1 is a condensation into tabular form of many of the observations made in this
paper. The abbreviated Interpretations should be fair ly self -explanatory at this point.
The entries arc classified according to the primary goal of their approach , as they
were in this paper: simp l if y ing or automating the generation of code generators
(~.ect ions 3, 4, resp.). Note that all of the authors model code generation as a multi ple-
step process from source language to intermediate language-machine not.’tion(s) to the
target machine code. Some used an internal notation like Wilcox ’s SLM; others used an
APT-like notation . Wilcox used both. Regardless of its form , the utility of the internal
notation is that it provides a low-level but machine-independent UNCOL (Conway
(1958)) representation , and/or it allows information and transformations to be more
easil y and concisely represented. One of the most important aspects of the various
techniques, but the hardest to compare in any simple way, is the algorithm itself; these
are simply summar ized in a short phrase in the figure. Th. last two columns give a
short evaluation of the approach.

A frequentl y confusing aspect of systems involving more than one level of
interpretation or translation , such as many of those descr ibed, is what is being
interpreted/translated by/ into what .t what point. For examp le , the approaches differ
as to whether the tran slator is table-driven , or generated from tables, and the degree
to which the case analysis of instructions is per formed at translation time as opposed
to translator construction time. A simple notation, developed by the author in
conjunction w ith S. Saunders [1977), is used in Figure 2 to try to clarify these
relationships for selected systems. The notation is quite simple; two primitives are
used. An arrow from language LI to language 12, with T connected to the side of the
arrow, Indicates that I tra,ulates the text (program) in language LI to language L2. If
12 Is missing, i.e., the head of the arrow is replaced by an electrical-eng ineering
grounding symbol, then T tnt.rprets Li (one can think of this as translating LI Into
action, perhaps).

It should be noted that the assumptions the various authors make about the definition
of code generation and its relationship to the rest of the comp iler differ somewhat.
For example , the stage at which register allocation is performed differs , and this
af fects the flexibility and information available to other stages (see comments on
MUG2). The pos t-processing assumptions also differ , for example whether machine or
assembly code is generated. Snyder even takes advantage of the syntax of the
assembler language In building code generation macros. Although there are these
differences , all of the authors have in common the “co re ’s function of code generation:
the selection of machine instructions on the basis of the Intermediate language
constructs.

in summa ry, this paper has attempted to point out the potential drawbacks and
advantages of several models of code generation, particularly with respect to
possibilities for simplif ying and automa ting the creation of this phase of the comp iler.
Progress has been made, yet all of these works have non-trivial deficiencies with

a

_______________________________________________________ 
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respect to this goal, pointing directions for future research. It Is likely that there will
be more interest In this field In the near future.
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FIgure 2. Interpretation & Translation diagrams for selected systems.


